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Understanding species-specific relationships with their environment is essential for 
ecology, biogeography and conservation biology. Moreover, understanding how these 
relationships change with spatial scale is critical to mitigating potential threats to bio-
diversity. But methods which measure inter-specific variation in response to environ-
mental parameters that are also generalizable across multiple spatial scales are scarce. 
We used broad-scale avian citizen science data, over continental Australia, integrated 
with remotely-sensed products, to produce a measure of urban-tolerance for a given 
species at a continental-scale. We then compared these urban-tolerances to modelled 
responses to urbanization at a local-scale, based on systematic sampling within four 
small cities. For 49 species which had sufficient data for modelling, we found a sig-
nificant relationship (R2 = 0.51) between continental-scale urbanness and local-scale 
urbanness. We also found that relatively few citizen science observations (~250) are 
necessary for reliable estimates of continental-scale species-specific urban scores to 
predict local-scale response to urbanization. Our approach demonstrates the appli-
cability of broad-scale citizen science data, contrasting both the spatial grain and 
extent of standard point-count surveys generally only conducted at small spatial scales. 
Continental-scale responses in Australia are representative of small-scale responses to 
urbanization among four small cities in Australia, suggesting that our method of pro-
ducing species-specific urban scores is robust and may be generalized to other locations 
lacking appropriate data.

Keywords: citizen science, eBird, spatial scales, species–environment relationships, 
urban ecology, urbanization

Introduction

Understanding species–environment relationships (Mertes and Jetz 2018) is a criti-
cal and unifying goal in ecology (Hutchinson 1953, Levin 1992), biogeography 
(Currie and Paquin 1987, Hawkins et al. 2003) and conservation (Guisan et al. 2013, 
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Duflot et al. 2018). A thorough and generalized understand-
ing of how species respond to their environment should 
translate to an increased ability to mitigate potential threats, 
ultimately preserving biodiversity (Paterson  et  al. 2008, 
Tilman et al. 2017). Chief among these potential threats are 
anthropogenic changes (Tilman 1999, Hautier et al. 2015), 
such as climate change (Hampe and Petit 2005), species inva-
sions (Ricciardi et al. 2017), and land use changes via urban-
ization (Vandewalle et al. 2010). Yet the scale-dependence of 
species–environment relationships remains complex and gen-
erally unresolved (Weins 1992, Pautasso 2007, Mertes and 
Jetz 2018): for example, 10% of studies show biodiversity 
changes which switch directions across scales (Chase  et  al. 
2018). Empirical analyses are desperately needed to inform 
understanding of the patterns and mechanisms relating 
to scale-dependence of species–environment relationships 
(Hostetler 2001, Holland et al. 2004).

Our current understanding of spatial-scale dependence 
of biodiversity responses to land-use is commonly derived 
from aggregated biodiversity metrics (Gotelli and Colwell 
2001), including: species richness (Whittaker  et  al. 2001, 
Weibull et al. 2003, Diniz-Filho and Bini 2005, McKinney 
2008, Concepción et al. 2016, Zellweger et al. 2016), various 
measures of species diversity (He et al. 1996, Meynard et al. 
2011, Morlon et al. 2011, Roeselers et al. 2015, Salazar et al. 
2016), or other functional groupings (Devictor et al. 2008, 
Clavel et al. 2011, Gámez-Virués et al. 2015, Deguines et al. 
2016). Even when assessing species-specific responses to envi-
ronmental relationships, a general approach is to categorize 
species based on a priori knowledge in how they respond to 
a particular environmental parameter, or use a simple mea-
sure of abundance from a limited spatial scale (McKinney 
2002, 2006, Bonier  et  al. 2007, Kark  et  al. 2007, Møller 
2009, Pelletier  et  al. 2010, McDonnell and Hahs 2015, 
Geschke et al. 2018). While this approach is analytically and 
conceptually simple, it assumes that species within groups 
respond equally (Lepczyk  et  al. 2008, Evans  et  al. 2011), 
limiting our understanding of the complex mechanisms 
influencing how organisms respond to their environment. 
Characterizing how biodiversity responds to its environment 
should thus be species-specific (Cushman 2006, Ewers and 
Didham 2006, McGarigal et al. 2016, Yackulic and Ginsberg 
2016, Vargas et al. 2017, Mertes and Jetz 2018).

Quantifying species-specific responses to environmental 
parameters is particularly important for anthropogenic land 
use changes (Suárez-Seoane  et  al. 2002), such as urbaniza-
tion (Jokimäki 1999, Fernandez-Juricic and Jokimäki 2001, 
Gehrt and Chelsvig 2004, Russo and Ancillotto 2015). If 
environmental planners can appropriately identify and pre-
dict the species most at-risk of urbanization (i.e. the least 
urban-tolerant species), then environmental planners can 
attempt to mitigate the threats specific to these least-toler-
ant species (Hostetler 2001) – e.g. by installing nestboxes if 
hollow-nesting birds are most at-risk. Conversely, if environ-
mental planners can appropriately identify the abundant (i.e. 
most urban-tolerant) species that may be harmful to other less 
urban-tolerant species, then steps can be taken to minimize 

the harm these species pose (e.g. by managing invasive spe-
cies in urban environments). By 2030, 10% of the earth’s 
landmass is projected to be urbanized (Elmqvist et al. 2013), 
making increasing urbanization – and its associated habitat 
loss, fragmentation and degradation – a significant anthro-
pogenic threat to the world’s biodiversity (Elmqvist  et  al. 
2016, Sanderson et al. 2018). Much research has informed 
our understanding of the negative impacts of urbanization 
on biodiversity (McKinney 2002, McDonald  et  al. 2008, 
Vimal  et  al. 2012, Huang et  al. 2018). But the impacts of 
urbanization on biodiversity are inconsistent among cities 
and across spatial scales, sometimes with peaks of biodiver-
sity at intermediate levels of urbanization (Chace and Walsh 
2006, Batáry et al. 2018). Thus, understanding of biodiver-
sity responses to urbanization is still lacking unified theories 
across spatial scales, with repeatable and robust methods, 
especially for species-specific measurements of response to 
urbanization.

A traditional hurdle in providing species-specific responses 
to their environment at various spatial scales has been the 
cost of data collection: it is expensive to collect voluminous 
amounts of data at the necessary spatial and temporal scales 
for generalizable inferences. This hurdle necessarily limits the 
spatial scale of a particular study as well as the number of 
species being investigated. Unsurprisingly, then, the major-
ity of studies have been conducted at somewhat localized 
scales – predominantly characterizing intra-city responses 
(Dickman 1987, Cornelis and Hermy 2004, Parsons  et  al. 
2006, Bickford et al. 2010, Hedblom and Söderström 2010, 
Bates  et  al. 2011, Fontana  et  al. 2011, Lizée  et  al. 2012, 
Concepción et al. 2016), and broad multi-city analyses are rare 
in comparison (Clergeau et al. 2006a, b, Morelli et al. 2016). 
This local understanding is directly applicable for greenspace 
management within cities, aimed at maintaining high levels 
of biodiversity (Borgström et al. 2006, Perring et al. 2015, 
Aronson  et  al. 2017). But local-scale data are rarely avail-
able within a specific city, limiting environmental planners’ 
ability to make informed decisions, highlighting the impor-
tance of local-scale data (or proxies) for urban planning and 
management. And a wide variety of studies investigate dif-
ferent spatial extents and grains (Forman and Gordon 1986, 
Turner et al. 1989), with little unifying theory for informed 
decisions and generalizable patterns.

Fortunately, we now have access to broad-scale empirical 
datasets numbering millions of observations – generally col-
lected through citizen science programs (Sullivan et al. 2009, 
Prudic et al. 2017, Van Horn et al. 2018) – revolutionizing 
ecological and conservation research (Cooper  et  al. 2007, 
Silvertown 2009, Pocock  et  al. 2018). Simultaneously, the 
field of remote sensing is rapidly advancing (Kwok 2018), 
with increasing numbers of sensors, targeted missions for 
ecology (Wikelski  et  al. 2007, Bioucas-Dias  et  al. 2013, 
Jetz et al. 2016), freely available data, and improved access 
to data analysis pipelines (Gorelick et al. 2017, Murray et al. 
2018). These biodiversity data, combined with remotely 
sensed data, are increasing our understanding of biodiversity 
responses to environmental change (Pettorelli  et  al. 2014a, 
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b, 2016), especially at macro-ecological scales (Hochachka 
and Fink 2012, La Sorte et al. 2014, Jokimäki et al. 2017, 
Horton et al. 2018), including bird responses to urbanization 
(Bino et al. 2008). But in regards to urbanization, how well 
do macro-ecological responses correspond with local-scale 
responses? If species-specific responses at broad spatial scales 
sufficiently predict local-scale responses, then environmental 
planners can make predictions for their local fauna, based on 
continental generalizations derived from citizen science data. 
Importantly, however, the reliance on continental citizen sci-
ence data needs to be robust, and the minimum number of 
citizen science observations to make robust generalizations 
needs to be quantified.

We assessed how bird species respond to urbaniza-
tion across spatial scales (i.e. based on a measure of urban-
tolerance), testing whether species-specific responses (i.e. 
changes in relative abundance across urbanization levels) to 
urbanization at a continental scale predict species-specific 
responses to urbanization at local scales. To do so, we inte-
grated two disparate datasets with different spatial extent 
and grain (Turner et al. 1989): 1) continental-scale species-
specific responses to urbanization based on globally available 
remotely-sensed data and 2) local-scale responses to urbaniza-
tion, derived from systematic sampling. The former relies on 
novel methods to assign species-specific continental urban-
ization responses in Australia, integrating broad-scale biodi-
versity data – collected through eBird (Sullivan et al. 2009, 
2014, Wood et al. 2011) – with remotely-sensed landcover 
maps of continuous measures of urbanization. The latter 
relies on modelled responses to urbanization derived from 
local-level bird surveys within four small cities in Australia. 
We then tested the relationship between these two differen-
tial measures of bird responses to urbanization.

Methods

Continental species-specific responses to urbanization

eBird (Sullivan et al. 2009, 2014, Wood et al. 2011, Callaghan 
and Gawlik 2015), launched in 2002 by the Cornell Lab 
of Ornithology, has > 600 million global observations and 
formed the data basis of the continental-scale species-specific 
responses. eBird works by enlisting volunteer birdwatchers who 
submit bird observations in the form of ‘checklists’ – defined 
as a list of birds seen or heard in a specified area. An exten-
sive network of regional volunteers (Gilfedder et al. 2018) use 
their local expertise to provide filters for the submissions, lim-
iting observations based on unexpected species or abundances 
of species. If an observation trips a ‘filter’ then it is reviewed 
before inclusion in the database. More detailed information on 
eBird protocols are provided in Sullivan et al. (2014).

Species-specific scores

We used continental eBird data to assign species-specific 
urban scores for each species in the analysis. This approach 

borrows from the longstanding theory behind urban adapt-
ers, avoiders and exploiters (Blair 1996, McDonnell and 
Hahs 2015, Geschke  et  al. 2018), and works theoretically 
by assessing how a species responds to a continuous level of 
urbanization (Fig. 1). For example, an urban avoider would 
have a predicted distribution of observations where very few 
observations would be in or near high levels of urbanization, 
contrasting with an urban exploiter which would have a pre-
dicted distribution of observations largely skewed to higher 
levels of urbanization (Fig. 1).

We first filtered all eBird data (ver. ebd_relFeb-2018) to 
include data between 1 January 2010 and 28 February 2018. 
This corresponded to the richest period of eBird data and 
minimizes undue leverage of mismatch between changes in 
eBird observations and urbanization values. The majority of 
these data corresponds to the period of local-level sampling 
(see below), as most eBird data are contributed from the recent 
past. We further filtered the entire suite of eBird data to the 
best quality lists (La Sorte et al. 2014, Callaghan et al. 2017), 
removing potential outliers such as extraordinarily long eBird 
checklists or eBird checklists which travelled long distances, 
as these checklists are most likely to introduce undue leverage 
on the results (e.g. include species in an area that was recorded 
from a great distance away). This was done by including only 
complete eBird checklists – where the observer recorded all 
birds heard and/or seen – from mainland Australia, which 
followed the travelling, random, stationary, area or BirdLife 
Australia protocols. We also filtered these checklists to those 
which recorded birds between 5 and 240 min and travelled 
less than 5 km or less than 500 ha area searches (La Sorte et al. 
2014, Callaghan et al. 2017, 2019b, Johnston et al. 2018), 
minimizing the chance that outliers would be included in 
the analyses. All checklists shared among multiple observers 
were randomly subsampled (i.e. one checklist was randomly 
selected), and all seabirds were omitted from the potential 
suite of species. Only species with a minimum of 100 obser-
vations were considered for assignment of continental-scale 
urban scores. Based on visual interpretation and our under-
standing of Australian birds, the data showed that species 
with < 100 observations had large variability in response to 
urban environments. However, when considering the species 
recorded at the local-scale (n = 94; see below), the mean num-
ber of observations for continental-scale assignment was 32 
642 ± 32 846 (SD). All but three species (spotted quail-thrush, 
pilotbird, beautiful firetail) in our analysis had > 1000 conti-
nental eBird observations (Supplementary material Appendix 
1 Table A1), and these were removed from analyses because 
they did not meet the minimum local-scale observation 
threshold (see below). Following filtering, each eBird check-
list was assigned a measure of urbanization – on a continuous 
scale. This was done by taking the average radiance of night-
time lights within a 5 km buffer of each checklist. A buffer 
was used to minimize any bias in eBird sampling protocols 
(e.g. mis-placement of eBird checklists by participants, and 
to account for travelling checklists throughout an area) and 
the size of the buffer has no discernible influence on the rela-
tive urban-score differences among species (Callaghan et al. 
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2019a). We used the VIIRS night-time lights (Elvidge et al. 
2017) as a proxy for urbanization because it is correlated 
positively with impervious surface cover and human popu-
lation density (Pandey  et  al. 2013, Zhang and Seto 2013, 
Stathakis et al. 2015) and because of its global availability and 
ease of use with Google Earth Engine (Gorelick et al. 2017). 
For each buffer, raw radiance values were used – after filter-
ing of the data to minimize the influence of fires, degraded 
data and other light source contamination (Elvidge  et  al. 
2017) – between 2013 and 2017 and the average raw radi-
ance value was taken as an annual composite. This approach 
of assigning urban scores shows strong agreements with other 
measures of urbanization such as human population density 
(Callaghan et al. 2019a, b). Each species’ observations then 
corresponded to a different distribution of VIIRS night-time 
lights (Fig. 1), and we defined the median of this distribution 
as a species-specific urban-tolerance score. For more method-
ological details, and a published list of species-specific urban 
scores see Callaghan et al. (2019a, b).

Local-scale species-specific responses to 
urbanization

We conducted bird-surveys within the Greater Blue 
Mountains World Heritage Area (GBWHA), which is ~10 
000 km2 and lies about 180 km from Sydney, New South 
Wales, Australia. Within a strip of linear conurbation, we 
designed transects through each of four cities within this 
conurbation (Supplementary material Appendix 2 Fig. A1). 

Points (n = 24) were spaced ~500 m apart on each transect to 
ensure independence of sampling points. Woodford (popu-
lation ~2500), Lawson (population ~2600) and Hazelbrook 
(population ~5000) had five points each, while Katoomba 
(population ~8000) had nine points (Supplementary mate-
rial Appendix 2 Fig. A1). Between August 2017 and August 
2018, transects were visited twice per month (n = 576), and 
5-min point-counts were conducted at each point, with all 
birds heard or seen counted within a 250-m radius. Surveys 
were only conducted on days with fine weather (i.e. no rain 
and minimal wind), and surveys were completed between 
sunrise and 5 h after sunrise. Transects (i.e. order of points vis-
ited) as well as order of transects were randomized so that the 
same transect was not being conducted first every month. We 
visually estimated the degree of urbanization at each point as 
the percent impervious surface within a 250-m radius buffer 
surrounding that point, using recent aerial photography from 
Google Earth Pro (sensu Blair 1996; Supplementary mate-
rial Appendix 2 Fig. A2) – a commonly employed approach 
within small-scale urbanization studies. The percent impervi-
ous surface was chosen as it is a direct measure of urbaniza-
tion, and generally readily available at local-scales for urban 
planners, whereas VIIRS night-time lights is at 500-m reso-
lution, not generally applicable at a small-scale. Hence, our 
approach compared different spatial grains, albeit measuring 
the same environmental response in urbanization.

We extracted species-specific responses to urbanization 
at a local scale, using a modelling approach and generated 
parameter estimates for each species, that were treated as the 

Figure 1. The theoretical expected distributions for the three types of commonly assigned responses to urbanization: urban avoider, urban 
adapter and urban exploiter. Also, showing three species’ distributions in response to night-time lights based on their continental eBird data 
observations, demonstrating an ‘example’ species for each of these theoretical distributions. The y-axis represents the density of observations 
that occur along the urbanization level. The real data was based on responses to VIIRS night-time lights, where radiance is on the x-axis, 
but this urbanization level could be a number of other metrics.
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‘local-scale urbanness’. The response variable in our models 
was the total number of presences (i.e. if a species occurred 
in a 5 min sampling event) for each point (n = 24) – i.e. the 
number of presences for a species at a given sampling point. 
The total number of presences possible was 24, given each 
survey point was sampled 24 times. The response variable 
was ‘zero-filled’, accounting for complete absences of a given 
species at a given point, and each species thus had a total 
sample size of 24 observations which were modelled. This 
response variable was modelled against the percent impervi-
ous area at each survey point (n = 24). We fitted generalized 
linear mixed models (GLMMs; Bolker  et  al. 2009) with a 
Poisson distribution, where the random effect was transect 
(i.e. city). This model was separately fitted to each species, 
and the regression coefficient for the impervious surface area 
predictor for a given species was taken as the species-specific 
response to urbanization at a local scale. Only species with a 
minimum of 10 presences across all surveys (out of a possible 
576) were considered for the GLMMs, ensuring that models 
would converge. Although species in the study region can 
show some seasonal movement, this was not included in our 
models to minimize over-fitting, given the sample size of the 
number of points (n = 24). Additionally, many of the seasonal 
species were excluded from analyses based on our cut-off for 
minimum of nonzero observations (i.e. many of the possible 
migrants were only recorded < 10 times). Our initial explo-
ration considered negative binomial model distributions, 
but AIC was consistently lower for Poisson than negative 
binomial, and more species failed to converge regardless of 
differing theta parameter estimations in the glmer fitting pro-
cedure (i.e. only 44 species would have been included in final 
comparisons). Thus, we specified our models with Poisson 
distributions to maximize the number of species which could 
be compared with continental-scale species-specific urban 
scores. But the results using negative binomial and Poisson 
distributions were similar when comparing the modelling 
approaches. We also explored the modelling results when 
only including species which were detected within 100-m of 
the survey point, and the results were similar when includ-
ing all species detected within 250-m radius of the survey 
point. Models were fit using the ‘glmer’ function from the 
lme4 package (Bates et al. 2015).

Regression of continental and local-scale urban 
measures

We observed a total of 94 species on our local-scale bird surveys 
(Supplementary material Appendix 1 Table A1). Fifty-one 
species had > 10 presences across all surveys (Supplementary 
material Appendix 1 Table A1) and were thus considered for 
GLMMs. After initial modelling, two species were further 
eliminated from analyses as their estimates from the GLMM 
were outliers when compared with the rest of the dataset 
(pilotbird and white-eared honeyeater; Supplementary mate-
rial Appendix 2 Derivation A1), likely resulting from a small 
sample size. Thus, 49 species were used in our regression of 
continental and local-scale urban tolerance measures, with 

their continental-scale species-specific urban scores being log-
transformed. Models were fitted using the ‘lm’ function in R. 
We fitted this model first without any weighting, and then 
re-fitted the model by weighting the model by the standard 
error of the local-scale urban scores’ parameter estimates. This 
gave more weight to the model based on the confidence (i.e. 
standard error of model fits) of the GLMMs, and provided us 
with a more robust approach to test the relationship between 
continental and local-scale urban tolerance measures.

Assessing necessary number of citizen science 
observations for reliable estimates

We re-ran our linear model, multiple times, calculated with 
different numbers of samples used to calculate continental-
scale species-specific urban scores (i.e. the median of the dis-
tributional response to night-time lights), in order to assess 
the number of citizen science observations necessary for reli-
able estimates. We re-calculated the urban scores based on 
the use of 10–1000 randomly sampled eBird observations, 
by increments of 10. For each of these different sets of urban 
scores (n = 100), we again regressed the log-transformed vari-
ables against the static local-scale responses.

Results

A total of 94 species were observed on our local-level transects 
(Supplementary material Appendix 1 Table A1). The spe-
cies that was most likely to be associated with urbanization 
at the local-scale was rock pigeon (parameter estimate: 0.14), 
while the species least likely to be associated with urbaniza-
tion at a local-scale was rufous whistler (parameter estimate: 
−0.08; Supplementary material Appendix 2 Fig. A3; full 
model results, including significance of GLMMs can be found 
in Supplementary material Appendix 2 Table A2). Of the 94 
potential species, rock pigeon had the highest continental-scale 
species-specific urban score (12.49) while red-capped robin 
had the lowest continental-scale species-specific urban score 
(0.047). Of the 49 species included in analyses, the mean urban 
score was 2.37 ± 2.81 (Supplementary material Appendix 2 
Fig. A4). Thus, rock pigeon had both the highest local–urban 
score and continental–urban species-specific score show-
ing some qualitative agreement between the two approaches. 
Similarly, superb lyrebird had the second lowest local–urban 
score and the lowest continental–urban species-specific score 
(cf. Supplementary material Appendix 2 Fig. A5, A6). Some 
species (e.g. crested pigeon, spotted pardalote, New Holland 
honeyeater) had relatively high continental-scale urban scores 
(i.e. ranked in the top 50%) but were still negatively associated 
with urbanization at the local-scale. Conversely, some species 
(e.g. gray butcherbird, satin bowerbird) had relatively low con-
tinental-scale urban scores (i.e. ranked in the bottom 50%) but 
were positively associated with urbanization at the local scale 
(cf. Supplementary material Appendix 2 Fig. A5, A6).

Continental species-specific urban scores significantly pre-
dicted (t = 6.95, df = 47, p < 0.001) the localized urban scores 
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with an R2 of 0.51, and the relationship was even stronger 
(t = 8.93, df = 47, p < 0.001, R2 = 0.63) when the model was 
weighted by the standard error of the local-scale urban scores’ 
parameter estimates, to reduce distortion by species with 
small sample sizes. Even without this correction, the rela-
tionship appears to be robust to the number of underlying 
samples per species used to calculate the continental urban 
score. Indeed, of 100 different models, based on sample sizes 
for continental-scale urban scores from 10 to 1000 there was 
little differentiation in the underlying relationship (Fig. 2a), 
and the R2 for these models leveled off after ~250 observa-
tions (Fig. 2b).

Discussion

We demonstrated a novel empirical relationship between 
continental-scale urbanness of birds in Australia and local-
scale urbanness among four small cities, relying on > 3 
million citizen science bird observations combined with 
intensive local-scale bird surveys, highlighting the potential 
applications of broad-scale citizen science data. We found 
that a relatively small number of citizen science observations 
(~250) are needed to provide reasonable estimates of local-
scale responses to urbanization. This approach highlights that 
continental-scale data may be a sufficient proxy throughout 
regional cities to help guide urban planning and development 
– even when these cities lack the appropriate citizen science 
data. For example, urban planners in developing cities can 
look at the continental ranking of species’ urban tolerance and 
sufficiently design cities that provide habitat and resources 
for those species most at risk (i.e. providing artificial hollows 
for hollow-nesting birds or ensuring urban grasslands for at-
risk granivorous species). Concomitantly, urban planners can 
mitigate risks from the most harmful species (i.e. despotic 
species which likely have the highest urban-tolerance scores).

Urbanization will continue to impact biodiversity in a 
multitude of ways (Elmqvist  et  al. 2016), and understand-
ing species-specific responses to urbanization (Gehrt and 
Chelsvig 2004) is essential to understand how to best miti-
gate the threats to native fauna most at-risk of urbaniza-
tion (Møller 2010). Indeed, much research has investigated 
which biological and ecological traits are associated with 
urban-adapted birds in an attempt to identify those species 
most at-risk (Kark et al. 2007, Croci et al. 2008, Evans et al. 
2011, Callaghan et al. 2019b). We provide significant meth-
odological enhancements to these approaches, serving as a 
foundation for future studies to investigate the ecologi-
cal and conservation validity of how biodiversity responds 
to urbanization across spatial scales (Hostetler and Holling 
2000, Clergeau et  al. 2006b). This method moves past the 
traditional notion of characterizing species based on known 
responses to urbanization (Kark et al. 2007, Geschke et al. 
2018), and instead relies on continuous measures of inter-
specific variation, although we note that species can indeed be 
clustered into those which respond to urbanization positively, 
negatively and show mixed responses (Fig. 1). The difference, 

Figure 2. (a) Continental-scale urbanness (x-axis) is the median of a 
species’ distribution of all continental eBird observations in response 
to VIIRS night-time lights, presented on a log-scale: greater values 
equate to greater urban-tolerance (Supplementary material 
Appendix 2 Fig. A6). Local-scale urbanness (y-axis) is the parameter 
estimate from a modelled relationship between number of presences 
at a survey point and the estimated percent impervious surface area 
at that survey point: positive values represent a positive response to 
urbanization and negative values represent a negative response to 
urbanization (Supplementary material Appendix 2 Fig. A5). This 
regression of log-transformed continental-scale urbanness versus 
local-scale urbanness is shown for 49 species. Standard error is 
shown for local-scale urbanness as the standard error retrieved from 
each generalized linear model, whereas standard error for the conti-
nental-scale urbanness are boot-strapped standard error estimates 
for the median of a species’ response to urbanization. Each gray 
model fit shows a model fit for 100 different models, each with 
10–1000 data points (by 10) used to calculate the continental-scale 
urbanness. The red line of best fit shows the linear model results, 
using all available observations for each species. An interactive ver-
sion of this figure is available here <https://coreytcallaghan.github.
io/ECOG-04863/local_cont_urbanness.html>. (b) R2 for each of 
the 100 different linear models fitted, using 10–1000 data points to 
calculate the continental-scale urban scores. The red line shows the 
overall R2 (0.51) while the blue line represents a smoothed response 
fitted through the different linear models fitted with the shaded gray 
area representing the standard error of this model fit.
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however, is that these characterizations are informed, incor-
porating inter-specific variation.

There is currently the temptation to ‘think big’, and address 
macroecological questions, given we are in the midst of a ‘big-
data’ revolution in ecology (Hampton et al. 2013, Soranno 
and Schimel 2014). Simultaneously, advances in sensor-based 
data collection (e.g. satellite remote sensing) are increasing 
environmental monitoring efforts, and an increased commit-
ment to collating and sharing spatially explicit biodiversity 
records (i.e. point observation data; Turner et al. 2015) for 
a range of taxa are increasing our understanding of biodi-
versity at spatial scales unimaginable mere decades ago. We 
acknowledge that these data are rapidly expanding our ability 
to monitor biodiversity at global scales (Chandler et al. 2017, 
McKinley et al. 2017, Vihervaara et al. 2017). But many pol-
icy-relevant decisions (e.g. urban development and planning) 
happen at local scales, and the utility of these data needs to 
be empirically grounded in local-relevance (Callaghan and 
Gawlik 2015, Sullivan  et  al. 2017). Adaptive governance 
systems, supporting practical management at local-scales are 
necessary for environmental planners to sufficiently mitigate 
the impacts of urbanization on biodiversity (Borgström et al. 
2006). At the same time, local-decisions should be grounded 
at several spatial scales (Borgström et al. 2006), accounting 
for the diverse biodiversity responses. Often, however, such 
data generalizable among spatial scales are unavailable for 
environmental planners. Our results provide empirical evi-
dence that continental-scale data reflects local-scale relevance, 
albeit within one localized study site. These species-specific 
urban scores have the ability to move beyond species-specific 
measures to community-level measures of response to urban-
ization (Callaghan et al. 2019a). And this community-level 
index can be tracked through time (among years) in response 
to restoration and/or degradation of urban greenspaces, 
highlighting the success or failures of restoration projects, 
for instance. Our results provide a ‘ranking’ of urban-tol-
erance that urban planners can use – in combination with 
local natural history – to successfully plan urban develop-
ment that benefits species which are particularly susceptible 
to urbanization (i.e. that have low continental-scale urban-
tolerance scores). An example would be actively incorporat-
ing grasslands in urban planning at a local-scale, providing 
habitat specifically for granivores (Callaghan et al. 2019a, b). 
Importantly, such community-level indices can be calculated 
using citizen science data, potentially allowing for long-term 
monitoring of urban greenspaces in urban areas. Although 
we investigated local-scale impacts within small cities, we 
predict that similar empirical patterns would likely emerge 
for local-scale impacts within medium and large-sized cities. 
This is because we would expect continental-scale patterns 
to be most different from local-scale patterns in smaller cit-
ies because the likelihood of urbanization impacting species-
specific responses along an urbanization gradient is likely to 
be more easily detected in medium and small-size cities.

This methodological approach of assessing species-spe-
cific urbanness of birds based on continental citizen science 

data is in its infancy, and we highlight here some potential 
opportunities for future research. First, and foremost, this 
approach may be applicable across other taxa (e.g. butter-
flies, dragonflies, mammals), reliant mainly on spatial coor-
dinates of a large number of sightings – increasingly available 
via broad scale citizen science data (Chandler  et  al. 2017). 
Second, although our analysis is focused on species-specific 
responses to urbanization, we highlight that the broad-scale 
assignment of a species-specific response to its environment 
may be repeated with other environmental factors (e.g. tree-
cover, water-cover), albeit these responses will be inter-cor-
related. This approach could use remotely-sensed landcover 
products – other than urbanization – to assign species-spe-
cific responses. But species’ responses to other environmen-
tal factors should also be tested across spatial scales. Third, 
although we focused on measuring inter-specific variation, 
this approach may be able to be used to measure intra-specific 
variation, informing how local populations are adapting to 
anthropogenic change (González-Oreja 2011). For example, 
some species did not conform to the general results (e.g. New 
Holland honeyeater, spotted pardalote, galah) which is likely 
explained by intra-specific variation in their continental pop-
ulation with some populations being more ‘urban’ than other 
populations, which may not necessarily manifest in a specific 
location (i.e. our local-scale study site). Fourth, we currently 
use large amounts of data to provide a ‘snapshot’ of how birds 
are currently responding to urbanization. But many species 
change their responses through time (i.e. among years and 
seasons), showing localized adaptations (Evans  et  al. 2009, 
Martin  et  al. 2010, Yackulic and Ginsberg 2016). This 
approach should be able to measure species-specific responses 
to urbanization through decadal responses. This approach 
should also be adopted to regions where the fauna has dif-
fering migration strategies, thereby assessing species-specific 
responses to urbanization intra-annually.

Citizen science data are radically shaping the spatial and 
temporal scale with which ecological questions are being 
answered (Dickinson  et  al. 2012, Kobori  et  al. 2016), and 
this is particularly true within urban areas (Cooper  et  al. 
2007, Callaghan et al. 2018). However, there are a number 
of biases associated with citizen science data, including spa-
tial and temporal sampling biases (Uychiaoco  et  al. 2005, 
Boakes et al. 2010, Belt and Krausman 2012) with data dis-
proportionately skewed towards urban areas (Kelling  et  al. 
2015). Detection probability also varies among species and 
between habitats (e.g. urban versus rural habitats), potentially 
limiting the ability to draw inferences to poorly sampled spe-
cies and habitats. For example, in our study, we predomi-
nantly looked at common species, and our results may be 
only applicable to common species, with more research nec-
essary to understand how our results translate to uncommon 
and rare species. This study was conducted in Australia – an 
area with relatively large amounts of citizen science data – and 
our results may not be generalizable or applicable to other 
parts of the world with less data (La Sorte and Somveille 
2019) – and this should be tested in the future. But with the 
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global increase in such data (Chandler  et  al. 2017), we are 
hopeful that our approach will be applicable to historically 
poorly sampled parts of the world (e.g. tropics, developing 
countries). Given these biases, we do not suggest that system-
atic sampling should be replaced with citizen science data, 
but rather, that they can complement one another to provide 
a more generalized understanding in biodiversity research 
(Bayraktarov et al. 2019). Nevertheless, methods such as the 
one we introduce here will likely be essential to track biodi-
versity responses to urbanization into the Anthropocene.
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